
42 The Delphi Magazine Issue 66

Under Construction:
VisiBroker 3.3 For Delphi 5
by Bob Swart

Exactly a year ago, in Issue 54, I
wrote about the free Visi-

Broker 3.3 for Delphi 5 which was
then made available as a free
download and plug-in for Delphi 5
Enterprise users. It contained a
somewhat limited IDL2Pas and
support for CORBA exceptions, but
client-side only.

One year later, in January 2001,
Borland is about to release the final
version of VisiBroker 3.3 for Delphi
5, with an enhanced IDL2Pas,
including a Wizard, and full
support for both client- and
server-side CORBA exceptions. In
this article, I’ll explore some of the
enhanced features that the new
VisiBroker for Delphi 5 brings us.

No More Type Library
The free VisiBroker 3.3 for Delphi 5
Enterprise that shipped in Decem-
ber 1999 could generate client
stubs for CORBA clients, and con-
tained client-side support for
CORBA exceptions, but did not
have any server-side support. We
still needed to use either the Delphi
5 Type Library to create a new
CORBA server, or rely on a CORBA
server written in some other lan-
guage (and use the corresponding
IDL file to let VisiBroker for Delphi
generate the CORBA client stubs).

The best news of the year so far
(until the launch of Kylix) is the
fact that the new VisiBroker 3.3 for
Delphi 5 now also contains full
CORBA server support. Indeed,
there is no more Type Library, but
a full IDL2Pas compiler that takes
your IDL (interface definition lan-
guage) file and turns it into client
stubs or server skeletons.

Interface Definition
The IDL file contains the definition
of the interface between the
CORBA server and the CORBA
clients. For this article, I’ve con-

structed a some-
what artificial IDL
file (Listing 1) that
will cover most of
the existing and
new features and
enhancements of
VisiBroker 3.3 for
Delphi 5.

There are more
features available

in VisiBroker 3.3 for Delphi 5, such
as the support for sequences and
enumerated types, but these will
be covered in an extended version
of this article (that will be made
available as white paper on the
Borland website shortly after
you’ve read this original version).

Let’s now describe the meaning
of the interfaces defined in the IDL
file. First of all, we have an inter-
face called Rates, which has one
method to return the current
interest_rate. This is no big deal,
but in the second interface we
make use of the first interface, by
passing it as argument to the
get_ratesmethod (so the internals
of get_rates will have to use the
Rates interface to call the
Rates.interest_rate method).

The third construct inside the
module is a struct AccountError
with a float to hold the current
Balance and a string to hold an
ErrorMessage. This struct will
clearly be used in an error situa-
tion, which is why I’ve embedded it
inside an exception type called
AccountException, the fourth
construct of module DrBob42.

➤ Listing 1

module DrBob42
{
interface Rates
{
float interest_rate();

};
interface Account
{
float balance();
float get_rates(in Rates myRates);

};
struct AccountError
{
float Balance;
string ErrorMessage;

};
exception AccountException
{
AccountError Error;

};
interface MyAccount: Account
{
void deposit(in float amount);
void withdraw(in float amount) raises(AccountException);

};
};

➤ Figure 1:
The CORBA tab
of the Object
Repository.

February 2001 The Delphi Magazine 43

The fifth and last construct is the
most advanced: using interface
inheritance and methods (possi-
bly) raising CORBA exceptions.
Regarding interface inheritance:
it’s even possible to use multiple
interface inheritance (or interface
multiple inheritance, depending
on how you look at it), but I always
try to avoid multiple inheritance
wherever I can, including inside
IDL files.

IDL2PAS Wizard
After we’ve installed VisiBroker for
Delphi 5, you can find both the
IDL2Pas.bat and JAR files in the BIN
directory of Delphi 5, as well as a
number of interesting examples in
the Demos\IDL2Pas directory and
new documentation in the
Docs\IDL2Pas directory. Finally,
check out the Sources\RTL\
CORBA directory for a number of
new files (including CORBA.PAS
and ORBPAS30.PAS). The
IDL2Pas.pdf file in the DOCS direc-
tory is especially useful and quite
interesting to read: it’s the
VisiBroker for Pascal Reference
Guide.

Now then, assuming you’ve pur-
chased or downloaded or in some
other way acquired the new
VisiBroker 3.3 for Delphi 5, start
your engines (read: Delphi 5 Enter-
prise) and you’ll find a new tab in
the Object Repository called CORBA.
Inside there are two icons for two
new project Wizards: one for a
CORBA Client Application and one
for a CORBA Server Application
(see Figure 1).

Since the CORBA
Server is usually the
place to start, select
the CORBA Server
Application icon and
double-click it, or
click on the OK
button. This will
bring up the whole
new IDL2Pas Wizard
in which you can

simply add all the IDL files that
need to be part of your CORBA
Server.

Note from Figure 2 that we can
either select a Console Application
or a Windows Application for our
CORBA Server. The difference
should be obvious, and I’ve
selected a Console Application
here (but feel free to start playing
with a Windows CORBA Server
Application first, if you like). We’ll
get the same choice (console
versus Windows) when we create
the CORBA Client, and since you’re
not limited to just one CORBA
Client (or CORBA Server for that
matter), the choice is arbitrary:
you could create all kinds, as we
will see both in this article and the
next one.

The Options tab of the IDL2Pas
Wizard contains a number of help-
ful options (see Figure 3). They
range from adding the generated
.pas files to the current project
(alternatively you may
just want to run
IDL2Pas on one or more
IDL files to generate the
client stubs and server
skeletons) to generate
the different kinds of
output files (skeleton
and implementation
units) and generating
or retaining comments
in the generated files.

A very helpful and important
option is Overwrite implementation
Units (unchecked in Figure 3).
When this option is checked, the
implementation units, containing
the source code you just wrote
with your implementation, will be
overwritten when you run
IDL2Pas. The first time this hap-
pens, you’ll lose all your work (in
the _impl.pas unit), and you won’t
be happy. Needless to say, it won’t
happen a second time to me.

Fortunately, the settings of all
these options are saved inside the
defproj.dof file in the Delphi5\Bin
directory, so you only have to
specify your favourite settings
once and they’ll be the same every
time.

When creating Delphi CORBA
Clients, the three options for the
skeleton and implementation units
will be disabled (these are irrele-
vant for CORBA Clients, of course).
Otherwise, the IDL2Pas Create
Client Dialog is exactly the same as
the IDL2Pas Create Server Dialog.

CORBA Server
Running IDL2Pas on the
DrBob42.idl file creates four files:
DrBob42_i.pas (with the interface
definitions), DrBob42_c.pas (with
the client stubs, the code which
the client application can use or
call), DrBob42_s.pas (with the
server skeletons) and finally
DrBob42_impl.pas with our imple-
mentation of the skeletons. This
last file is the one you don’t want
the IDL2Pas to accidentally over-
write next time it processes the IDL
file. The DrBob42_impl.pas file

➤ Figure 2: Adding
DrBob42.idl to
the Console
CORBA Server
Application.

➤ Figure 3: IDL2Pas
CORBA Server
Options.

44 The Delphi Magazine Issue 66

contains the ObjectPascal class
definitions for TRates, TAccount and
TMyAccount that we need to imple-
ment. These are also the three
CORBA classes we need to create
in the server itself, so the clients
can talk to them. Note that
AccountError and AccountException
are defined in DrBob42_i.pas and
require no further implementation
(both are just ‘dumb’ structures).

Talking about the CORBA Server:
apart from the aforementioned
four generated files, the IDL2Pas
Wizard also generates a new
Delphi project, which has the gen-
erated files in its uses clause, and
also contains some comments
(examples) to guide you into
writing your own CORBA Server
initialisation code. I guess it’s a bit
complex to parse the IDL file,
obtain the interface names and
automatically generate and insert
variable declarations and con-
structor calls for these CORBA
interfaces. Maybe a future version
of the IDL2Pas wizard can support
this feature (or we can build it our-
selves someday).

In our case, we need to change
the main project file from the gen-
erated example as seen in Figure 4,
and make sure instances are cre-
ated of Rates, Account and
MyAccount (which are in fact merely
aliases for TRatesSkeleton, TAccou-
ntSkeleton and TMyAccountSkel-
eton). Inside the DrBob42_s.pas file
(containing the server skeletons),
we see TRatesSkeleton, TAccount-
Skeleton and TMyAccountSkeleton
classes, each with the same con-
structor Create that takes two argu-
ments: the first for an instance

name (which can be anything), and
the second for an instance of the
CORBA interface itself):

constructor Create(
const InstanceName: string;
const Impl: Rates);

Once all three CORBA classes have
been created with help of their
skeleton, we need to call the
ObjIsReady method of the BOA
(Basic Object Adaptor) to tell the
BOA that this CORBA object is
ready to be used by CORBA clients.
And finally, once all CORBA
Objects have been registered as
being ready, we need to call the
ImplIsReady method of the BOA to
tell it that the entire CORBA Server
application is ready to go into the
‘waiting loop’. This waiting loop
means that it looks like the CORBA
Server is now hanging, while in fact
it is waiting for, receiving and
responding to CORBA requests
(from CORBA Clients), not unlike
the Windows messaging loop we all
know. When you terminate the
console application, the waiting
loop is ended and the CORBA
server is closed. For
a Windows CORBA
application, the call to
BOA.ImplIsReady is not
needed, since the
Windows loop itself
will make sure the
CORBA server can
receive and respond
to CORBA requests
(until the Windows

CORBA Server application is
closed, of course).

The resulting CORBA Server
application for our IDL file can be
seen in Listing 2.

Note the cast as _Objectwhich is
used in the BOA.ObjIsReady calls.
This is not really needed. In fact,
although it was part of the example
snippet that was generated, there
is no use for it, so I won’t be using it
again (the compiler will not com-
plain if you compile without the as
_Object parts, the CORBA Server
will still run, and the code looks
much clearer without the unneces-
sary focus on the as _Object
statements.

Server Skeletons
Now that we’ve created our
CORBA Objects, it’s time to actu-
ally implement them (otherwise
the CORBA Server won’t do much
good), so let’s turn to the
DrBob42_impl.pas file. The header
of this file, like all four generated
files, explains that the file was
actually generated by the Inprise
VisiBroker IDL2Pas CORBA IDL
compiler (I wonder if the final

➤ Figure 4:
Corba Server
generated code in
the Delphi 5 IDE.➤ Listing 2: CORBA Console

Server Application.

program CorbaServer;
{$APPTYPE CONSOLE}
uses
SysUtils,
CORBA,
DrBob42_c in 'DrBob42_c.pas',
DrBob42_i in 'DrBob42_i.pas',
DrBob42_impl in 'DrBob42_impl.pas',
DrBob42_s in 'DrBob42_s.pas';

var
// The CORBA server Skeletons
Rate: Rates;
Acct: Account;
MyAcct: MyAccount;

begin
CorbaInitialize;
// Add CORBA server Code Here
writeln('Init');

Rate := TRatesSkeleton.Create('Rate', TRates.Create);
writeln('Server Rate Object Created...');
Acct :=
TAccountSkeleton.Create('Account', TAccount.Create);

writeln('Server Account Object Created...');
MyAcct := TMyAccountSkeleton.Create('MyAccount',
TMyAccount.Create);

writeln('Server MyAccount Object Created...');
writeln;
BOA.ObjIsReady(Rate as _Object);
write('And ');
BOA.ObjIsReady(Acct as _Object);
write('the ');
BOA.ObjIsReady(MyAcct as _Object);
writeln('Server is ready...');
BOA.ImplIsReady;

end.

46 The Delphi Magazine Issue 66

product will contain Borland
instead of Inprise in the name). All
the generated files also contain a
warning that says ‘Please do not
edit the contents of this file. You
should instead edit and recompile
the original IDL file’ including the
location of that IDL file. Confus-
ingly, this warning also appears in
the DrBob42_impl.pas file, the one,
you guessed it, we need to modify
to include our implementation.
Oops!

Fortunately, DrBob42_impl.pas
also contains several cues to tell us
to insert user variables and user
code at the right places. Once all
these commented cues have been
replaced by actual code, your
implementation is probably
complete as well. If we just store
the interest_rate and balance in
shared properties (instead of
retrieving them from a real data-
base, for example), then our

minimum CORBA Skeleton imple-
mentation can be seen in Listing 3.

Please note that this is a simple
implementation, with no consider-
ation of multi-threading issues
(when more than one CORBA client
is connected to the same CORBA
server, each talking with the same
global account).

Note that the Create construc-
tors in Listing 3 all contain a
ShowMessage statement that will tell
you, when you start the Server,
that this CORBA skeleton object is
indeed created. This might help
you pinpoint a problem when one
of your objects raises exceptions
or experiences other problems.

CORBA Exceptions
Talking about exceptions, I didn’t
add the AccountError structure and
AccountException type just for fun:
I want to use them as well, of
course. The obvious place to raise
an AccountException is inside the
withdraw method of the MyAccount
interface (and if you look closely at

the IDL file, you also see that that’s
the only place where we can raise
that exception). If the balance is
(still) empty, no money can be
withdrawn. And you should also
get an error if you try to withdraw
more money than is currently in
your account (although a real bank
would probably only show you a
warning and charge you interest
rates instead).

We need to create an exception,
and assign a value to its field Error
of type AccountError. The easiest
way to do this is to pass the initial
values as argument to the con-
structor of the TAccountError class
(which constructs the TAccount-
Error structure). The complete
code can be seen in the new ver-
sion of the TMyAccount.withdraw
method (which starts by checking
the fact that the amount to with-
draw cannot be negative), see
Listing 4.

Note that this example com-
bines the server-side structures
technique with server-side

unit DrBob42_impl;
{This file was generated on 29 Dec 2000 10:32:07 GMT by
version 03.03.03.C1.06 of the Inprise VisiBroker IDL2Pas
CORBA IDL compiler.}

{Please do not edit the contents of this file. You should
instead edit and recompile the original IDL which was
located in the file {C:\DrBob42\Drbob42.idl.}

{Delphi Pascal unit : DrBob42_impl derived from IDL
module : DrBob42}

interface
uses
SysUtils,
CORBA,
DrBob42_i,
DrBob42_c;

type
TRates = class;
TAccount = class;
TMyAccount = class;
TRates = class(TInterfacedObject, DrBob42_i.Rates)
protected
finterest_rate: Single;

public
constructor Create;
function interest_rate: Single;

end;
TAccount = class(TInterfacedObject, DrBob42_i.Account)
protected
fbalance: Single;

public
constructor Create;
function balance: Single;
function get_rates(const myRates: DrBob42_i.Rates):
Single;

end;
TMyAccount = class(TInterfacedObject, DrBob42_i.MyAccount)
protected
fbalance: Single;

public
constructor Create;
procedure deposit(const amount: Single);
procedure withdraw(const amount: Single);
function balance: Single;
function get_rates(const myRates: DrBob42_i.Rates):
Single;

end;
implementation
uses Dialogs;
constructor TRates.Create;
begin

inherited;
finterest_rate := 7; // seems like a nice interest rate
ShowMessage('TRates.Create');

end;
function TRates.interest_rate: Single;
begin
Result := finterest_rate;

end;
constructor TAccount.Create;
begin
inherited;
fbalance := 0; // balance starts empty
ShowMessage('TAccount.Create');

end;
function TAccount.balance: Single;
begin
Result := fbalance;

end;
function TAccount.get_rates(const myRates:
DrBob42_i.Rates): Single;

begin
Result := myRates.interest_rate

end;
constructor TMyAccount.Create;
begin
inherited;
fbalance := 0;
ShowMessage('TMyAccount.Create');

end;
procedure TMyAccount.deposit(const amount: Single);
begin
fbalance := fbalance + amount;

end;
procedure TMyAccount.withdraw(const amount: Single);
begin
fbalance := fbalance - amount;

end;
function TMyAccount.balance: Single;
begin
Result := fbalance;

end;
function TMyAccount.get_rates(const myRates:
DrBob42_i.Rates): Single;

begin
Result := myRates.interest_rate

end;
initialization
end.

➤ Listing 3: CORBA Server
Skeleton Implementation.

February 2001 The Delphi Magazine 47

exceptions (previously impossi-
ble, even with the earlier version of
VisiBroker 3.3 for Delphi 5 that
shipped in 1999). And also note
that since the CORBA Server is a
console application, I can simply
use writeln statements to report
an error in the CORBA server
output window.

CORBA Client
Now that we’ve created the CORBA
Server project and implemented
the Server skeleton, it’s time to
focus on the CORBA client applica-
tion. The framework is again
generated by the IDL2Pas Wizard,
but this time we need to look at the
interfaces, as defined in
DrBob42_i.pas, and use the
client stubs, as available in
DrBob42_c.pas.

Because we generated a Win-
dows CORBA Client application,
we get a main form, and must per-
form some special CORBA initial-
ization before doing anything else.
We can either insert a call to
CorbaInitialize in the main pro-
ject source code, or make sure this
routine is called in the OnCreate
event of the main form. I’ll use the
latter technique here, so I won’t
have to bother you with the
CORBA client main project file. In
fact, if you call CorbaInitialize in
the OnCreate event of your main
form, then you don’t even have to
include the generated DrBob42_i
and DrBob42_c units in the uses
clause of the CORBA client project
file. Of course, the consequence is
that we need to add these units to
the Client main form, but a com-
ment to tell you that is already gen-
erated in the main form unit by the
IDL2Pas wizard itself. The IDL2Pas
wizard has also added a special
method called InitCorba to the
Form class in the main form unit.
The InitCorba routine contains the
call to CorbaInitialize, but could
also be used to create (global)
instances of the CORBA server
objects, as I’ve done in Listing 5.

Note that we do not explicitly
have to destroy the CORBA objects
(and that the objects themselves
again are the Rates, Account and
MyAccount types that are just
aliases for the Server skeleton

types, but this time called the
client stubs).

Using Client Stubs
It’s nice that our client form
creates the CORBA objects in the
OnCreate event, but this would not
be very useful if we didn’t use the
CORBA objects in some way. So,
I’ve added two buttons to the client
form: one to deposit one dollar
to the MyAccount object and
another to (try to) withdraw 42
dollars from that account. Finally,
I have added a label that will
display the current balance
of MyAccount after each of
the two buttons have been
pressed (and of course the

corresponding MyAccount CORBA
server method has been exe-
cuted).

The OnClick events from the two
buttons can be seen in Listing 6.
Note the fact that we can actually
use the EAccountException type,
which holds the field called Error
of type AccountError with two
fields called Message (the error
message) and Account (the value of
balance or the amount, used in the
error message).

➤ Listing 5: CORBA Client Main Form Implementation.

➤ Listing 4: New
TMyAccount.withdraw
Implementation.

➤ Figure 5: CORBA Client Form.

unit ClientForm;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Corba, DrBob42_i, DrBob42_c;

type
TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);

private
Rate: Rates;
Acct: Account;
MyAcct: MyAccount;

protected
procedure InitCorba;

public
end;

var
Form1: TForm1;

implementation
{$R *.DFM}
procedure TForm1.InitCorba;
begin
CorbaInitialize;
Rate := TRatesHelper.Bind;
Acct := TAccountHelper.Bind;
MyAcct := TMyAccountHelper.Bind;

end;
procedure TForm1.FormCreate(Sender: TObject);
begin
InitCorba;

end;
end.

procedure TMyAccount.withdraw(const amount: Single);
var
Error: TAccountError;

begin
if amount <= 0 then begin
writeln('Cannot withdraw negative amount ',amount:1:2);
Error := TAccountError.Create(amount,'Cannot withdraw negative amount %f');
raise EAccountException.Create(Error);

end else if fbalance <= 0 then begin
writeln('Balance zero or negative: ',fbalance:1:2);
Error := TAccountError.Create(fbalance,'Balance zero or negative: %f');
raise EAccountException.Create(Error);

end else if amount > fbalance then begin
writeln('Balance not enough: ',fbalance:1:2);
Error := TAccountError.Create(fbalance,'Balance not enough: %f');
raise EAccountException.Create(Error);

end else
fbalance := fbalance - amount;

end;

48 The Delphi Magazine Issue 66

It is important that we make sure
that the MyAcct variable is indeed
pointing to a valid CORBA object. If
the initialisation (done with the
MyAccountHelper.Bind function)
failed, then MyAcct will still be nil,
which is why I usually either dis-
able all subsequent action buttons
in the OnCreate method, or explic-
itly include an assert in the OnClick
methods of the buttons them-
selves (as can be seen in Listing 6).

The final example that you can
see in Listing 6 is based on a combi-
nation of interface inheritance (the
fact that MyAccount inherits from
Account) and passing interfaces as
arguments (the fact that we can
pass Rate as argument to the
MyAcct.get_rates method).

Action!
As usual, before you can start the
CORBA client, you must first make
sure the CORBA server is running.
And before you can run the CORBA
server, you must make sure that
the VisiBroker Smart Agent is run-
ning (at least somewhere on the
IP-subnet).

Note that VisiBroker 3.3 for
Delphi 5 contains a developer
licence to develop and test all this,
but not a deployment license. So
when you’re ready to install and

deploy your CORBA application in
the field, you need to contact your
local Borland office and enquire
about purchasing a VisiBroker
licence.

Further
VisiBroker Enhancements
In this article, we’ve seen examples
of using the IDL2Pas to generate
both Server Skeletons and Client
Stubs. We’ve implemented the
Server Skeletons, and used IDL fea-
tures like interface inheritance,
interfaces passed as arguments,
IDL structures and server-side
exceptions. Next month, we’ll turn
the tables and write a CORBA
Windows Server application and

CORBA
CORBA, the Common Object Request Broker Architecture, is a
multi-tier communication protocol. In other words, using CORBA,
two or more applications (or tiers) can communicate with each other.
Usually, a CORBA architecture defines a CORBA server and CORBA
clients (that communicate with the server). The main advantage of
CORBA over, for example, COM or pure Java, is the fact that CORBA is
cross-platform (unlike COM) and cross-language (unlike Java). Spe-
cifically, a CORBA client on Windows can communicate with a CORBA
server on Linux or even on a mainframe. The only way in which
CORBA can be cross-platform and cross-language is by making sure
that the interface specifications (the ‘contact’ between the client and
the server) is defined in a special uniform language, called Interface
Definition Language (IDL). In IDL, you can define modules, interfaces,
methods and much more (as you can see in this article). The interface,
defined in the IDL file, must be compiled to a native representation
for both the client and the server, resulting in server skeleton files
(that need to implement the methods) and client stubs (that can call
the methods). There have been IDL2Cpp and IDL2Java compilers for
years, and the first IDL2Pas from Borland shipped in December 1999
but contained mainly client-side CORBA support. Now, with the new
IDL2Pas we finally have full client and server support for CORBA in
Delphi 5 Enterprise.

procedure TForm1.ButtonDepositClick(Sender: TObject);
begin
Assert(MyAcct <> nil,'No connection to CORBA Server');
MyAcct.deposit(1);
LabelBalance.Caption := Format('Current balance: %f (%f%%)',
[MyAcct.balance,MyAcct.get_rates(Rate)])

end;
procedure TForm1.ButtonWithdrawClick(Sender: TObject);
begin
Assert(MyAcct <> nil,'No connection to CORBA Server');
try
try
MyAcct.withdraw(42);

except
on E: EAccountException do
ShowMessage(Format(E.Error.ErrorMessage,[E.Error.Balance]))

end
finally
LabelBalance.Caption := Format('Current balance: %f (%f%%)',
[MyAcct.balance,MyAcct.get_rates(Rate)])

end;
end;

➤ Listing 6:
OnClick Implementations.

console Client application. We’ll
also experiment with some
advanced features that have been
left out of the column this month,
such as callbacks, enumerated
types, sequences, arrays, and
more, so stay tuned!

And if you are interested in using
CORBA with Delphi 5, then I
can only urge you to start working
with the new VisiBroker 3.3 for
Delphi 5: CORBA support in Delphi
5 the way it should have been from
the start!

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is an IT
Consultant for the Everest
Delphi OplossingsCentrum and a
freelance technical author.

	No More Type Library
	Interface Definition
	IDL2PAS Wizard
	CORBA Server
	writing your own CORBA Server tell it that the entire CORBA Server Server
	CORBA Exceptions
	CORBA Client
	Using Client Stubs
	Action!
	Further VisiBroker Enhancements
	CORBA

